Correction to "EPR Spectroscopic Studies of the $\mathrm{Fe}-\mathrm{S}$ Clusters in the O_{2}-Tolerant [NiFe]-Hydrogenase Hyd-1 from Escherichia coli and Characterization of the Unique [4Fe-3S] Cluster by HYSCORE"

Maxie M. Roessler, Rhiannon M. Evans, Rosalind A. Davies, Jeffrey Harmer,* and Fraser A. Armstrong* J. Am. Chem. Soc. 2012, 134, 15581-15594. DOI: 10.1021/ja307117y

Page 15585. In Table 1, two sets of published data obtained by other researchers were inadvertently placed in the wrong columns. Table 1, including a new footnote c, should read as follows:

Table 1. Midpoint Potentials of the EPR-Active Fe-S Clusters Observed in Native Hyd-1, the P242C, and C19G/C120G Variants Compared to Other Native O_{2}-Tolerant Hydrogenases ${ }^{a}$

enzyme	$[4 \mathrm{Fe}-3 \mathrm{~S}]^{5+/ 4+}$ proximal	[$4 \mathrm{Fe}-3 \mathrm{~S}]^{4+/ 3+}$ proximal	[$3 \mathrm{Fe}-4 \mathrm{~S}]^{+/ 0}$ medial	$[3 \mathrm{Fe}-4 \mathrm{~S}]^{+/ 0}{ }_{\text {app. }}$. medial	$[4 \mathrm{Fe}-4 \mathrm{~S}]^{2+/+}$ distal
native Hyd-1	230 ± 15	30 ± 30	190 ± 30	130 ± 15	-
P242C	175 ± 15^{b}	90 ± 20	$-$	-	-
C19G/C120G	-	-	215 ± 10	-	-
Aa Hase I ${ }^{14}$	232 ± 20	98 ± 20	-	78 ± 20	-65 ± 20
Re-MBH ${ }^{23, c}$	160	$-60^{\text {c }}$	-	25	$-180^{\text {c }}$
Rm CH34 ${ }^{23, c}$	240	50^{c}	-	100	-80^{c}

${ }^{a}$ The midpoint potentials are given in mV vs SHE, were obtained as detailed in Methods section, and reflect the 'Nernst plots' given in Figure 2B. The potentials for $A a$ Hase I were obtained at pH 6.4 vs the normal hydrogen electrode, ${ }^{14}$ and those for Re-MBH and R. metallidurans CH34 were obtained at $\mathrm{pH} 7.0 .{ }^{23}$ All potentials for the Hyd-1 enzymes were obtained at pH 6.0 . The apparent midpoint potential ('app') refers to the potential at which the uncoupled $[3 \mathrm{Fe}-4 \mathrm{~S}]^{+}$cluster signal is at half its maximum intensity (Figure S6A). ${ }^{b}$ Monitoring peak intensities at different field positions resulted in a spread of reduction potentials of ca. 55 mV (Figure S6B). ${ }^{c}$ In ref 23 , the higher midpoint potential (-60 mV and 50 mV) was assigned to cluster I , and the lower potential (-180 mV and -80 mV) was assigned to cluster II ; it is assumed here that the lower potential belongs to the distal cluster.

